
4.5 Software Development Process
This section provides information about embedded developer resources and procedures from the Impinj reader
SDK. It enables a developer to write an example application, generate the appropriate binaries, install the
example application on a reader, and execute the application.

4.5.1 Tools

The Impinj reader filesystem is based on the Debian GNU/Linux distribution. The version of Debian and the
version of the Linux kernel can be obtained with the shell command uname -a.

An embedded software developer can develop a custom application by using the Impinj reader Embedded
Toolkit (ETK) available from the Impinj Support Portal. This package includes the Impinj LLRP libraries
for C and C++, a sample application, a cross-compiled toolchain, and other utilities.

4.5.2 Create a Linux environment

Use of the Impinj Reader Firmware ETK requires a GNU/Linux Operating System. Create a Linux
environment with your preferred method (desktop, virtual machine, Vagrant, etc.). This guide assumes the
following commands have been run successfully against an Ubuntu 20.04 Linux system, at minimum:

$ sudo dpkg --add-architecture i386
$ sudo apt-get update --fix-missing
$ sudo apt-get install -y apt-utils
$ sudo DEBIAN_FRONTEND=noninteractive apt-get install -y build-essential
$ sudo DEBIAN_FRONTEND=noninteractive apt-get install -y cmake
$ sudo DEBIAN_FRONTEND=noninteractive apt-get install -y libc6-i386
$ sudo DEBIAN_FRONTEND=noninteractive apt-get install -y libssl-dev
$ sudo DEBIAN_FRONTEND=noninteractive apt-get install -y zlib1g:i386

Note: In the commands below, vim is used, but feel free to use any other text editor.

4.5.3 Setting up a development environment

4.5.3.1 Download the Impinj Reader Firmware ETK From the Impinj Support Portal, download
the most recent Impinj Reader Firmware ETK file, for example:

8.1.6.0_Octane_Embedded_Development_Tools.tar.gz

4.5.3.2 Extract the Impinj Reader Firmware ETK Navigate to the directory where the tarballs
are located. Use the following commands to extract the Impinj Reader Firmware ETK.

$ tar xzfv 8.1.6.0_Octane_Embedded_Development_Tools.tar.gz
$ cd 8.1.6.0_Octane_Embedded_Development_Tools

Now your environment is ready to compile code to run on Impinj Reader Firmware.

4.6 CAP creation
4.6.1 Overview

A CAP is a custom application that is loaded onto an Impinj RFID reader. An on-reader application is
installed onto the reader via an upgrade file using the same upgrade mechanism as the Impinj reader firmware.
Impinj provides a utility to convert a directory structure along with its contents into an upgrade (.upgx) file.
This tool is called cap_gen and is included in the ETK. Most of cap_gen’s arguments are passed in a text
description file. An explanation of each option is included in the ETK’s example cap_description.in file.

20

Note: cap_gen depends on fstool. This tool is also included in the ETK.

Here is an example of a cap_gen description file:

Upgrade Description File
#
This file contains the settings used by the upgrade generation tool
to produce an Impinj reader firmware upgrade file.
[Description]

Version is a 4 part number in decimal with each part limited to
0-255. It is the version of the upgrade file to be generated.
Version = 1.2.3.4

Valid Reader Hardware is a string designating the reader models onto
which you can load the upgrade. The following strings are acceptable
values for this field.
#
R700
R700V2
R7**
R***
#
The "R***" wildcard indicates that you can load the CAP onto any
reader, and effectively bypasses this check.
R700

File System Layout is an value used by the reader to determine how
the upgrade partition should be loaded to flash. Currently the only
supported layout version is 10.
File System Layout = 10

Input Directory is the top-level directory of the filesystem to
create. The files under this directory will be available on the
reader under /cust after the upgrade is loaded.
Input Directory = ./cap

Encrypt the upgrade filesystem content. Note this will be
decrypted when the upgrade file is processed by the reader.
The default is 'False' (don't encrypt)
#Encrypt = True

Should point to the cert from the key pair used to encrypt the bundle.
#Recipients = .//cap_enc.cert.pem

The above cert.pem can be generated with:
#
openssl req -x509 -newkey rsa:4096 -keyout cap_enc.key.pem -out \
cap_enc.cert.pem -sha256 -days 365
#
Choose any passphrase; you only have to enter it in the next step. Create
a p12 bundle:
#
openssl pkcs12 -export -out cap_enc_key-bundle.p12 -in cap_enc.cert.pem \
-inkey cap_enc.key.pem

21

#
Here, you must define a passphrase for the p12 bundle after entering the pem
passphrase.
#
Then upload bundle to the reader:
#
curl -k -u root:impinj -X POST -F "upload=@cap_enc_key-bundle.p12" \
-F"password=" \
https://$READER_IP/api/v1/system/certificates/tls/certs
#
Which should reply with [1] or whatever ID was assigned to the cert.
Activate CAP encryption for that cert:
#
curl -k -u root:impinj -X PUT -d "{"certId":1}" \
https://$READER_IP/api/v1/system/certificates/tls/services/cap-encryption

Use the expanded NAND Flash partition sizes available on
all Speedway based readers and gateways with PCBAs equal or
greater than v5.00.
The default is 'False' (build for all PCBAs).
#ExpandedNAND = True

CAP Partition size can be 128MB or 256MB
Using the 128MB size is recommended unless the extra space is specifically needed
Partition Size = 128

Several of these options are described in further detail below.

The Version field should be the version number of the on-reader application. This is the version number
that RShell will report for the CAP. It is also used by the auto upgrade mechanism to determine if the CAP
needs to be upgraded, details of which are covered in the Firmware Upgrade Reference Manual.

Input Directory tells cap_gen the root of the file structure it should include in the CAP upgrade file.

The content of a CAP firmware upgrade file can be encrypted by setting the Encrypt field to True. This
applies a symmetric block cipher to the data (directories and files) contained in the CAP upgrade file. It will
automatically decrypt the content when processing the upgrade file. Impinj recommends that an OSShell
password be included in the CAP to further protect the content of the encrypted CAP upgrade file.

4.6.2 Using cap_gen

For R700, the cap_gen utility includes extended functionality:

Usage: cap_gen.sh [-v] [| | -V]
-v Output verbose information
-d file The upgrade description file to use for settings
-f {mkfs|fstool} The external tool to use for filesystem generation
-o file The output file to write
-i file The image file to inspect and display metadata
-k directory The directory containing private key and cert for signing.

The directory should contain cap.key.pem and cap.cert.pem.
-n Generate new private key and cert for signing.
-V Output version information

cap_gen would typically be invoked as follows to generate an upgrade file:

22

$ cap_gen.sh -d cap_description.in -o my_cap.upg

To view details of an existing upgrade file:

$ cap_gen.sh -i my_cap.upg
Partition START

ValidHardware[00] : 225-255.255
ValidHardware[01] : 240-255.255
ValidHardware[02] : 250-255.255
ValidHardware[03] : 260-255.255
ValidHardware[04] : 270-255.255
ValidHardware[05] : 280-255.255
ValidHardware[06] : 290-255.255
FormatVersion : 3
Flags : 0x0000
FirmwareVersion : 1.2.3.4
FileSystemLayout : 10
Partition : CAP

4.6.3 Compiling a sample application

To build the ETK examples using your native environment, cd to the appropriate directory and call the
build.sh script.

[user@machine]$ pwd
//8.0.0_Octane_Embedded_Development_Tools
[user@machine]$ cd //examples/ltk-c/ && ./build.sh
[user@machine]$ cd //examples/ltk-cxx/ && ./build.sh

It’s also possible to build and run the examples using Docker. For more information, see the file README.md
in the ETK archive.

4.6.4 Custom application

To build the example CAP, cd to the cap directory and call make:

[user@machine]$ pwd
//8.0.0_Octane_Embedded_Development_Tools/examples
[user@machine]$ cd cap
[user@machine]$ make

The build produces a cap.upgx which can then be installed on an Impinj Reader via the web UI.

4.6.4.1 libpthread As of Impinj Reader Firmware 8.1.6, you must link the CAP and the libpthread
binary dynamically to avoid a segfault of the CAP. In addition, anyone using the CAP must modify the
/customer/start script with the following two lines to configure the library load path and avoid library load
errors from the example executable.

LD_LIBRARY_PATH="/customer/lib/"
export LD_LIBRARY_PATH

4.6.4.2 Enter OSShell ssh into the reader. After you connect to RShell, enter the following command
to get access to the Linux shell.

23

> osshell developer

4.6.4.3 Running the applications The following slightly edited console log shows how to run the
example files on an Impinj R700 RAIN RFID reader.

root@impinj-14-50-de:~# cd /cust
root@impinj-14-50-de:/cust# ./docsample1_c/docsample1 127.0.0.1
INFO: Starting run 1 ================
INFO: 2 tag report entries
E280-1190-A503-1FA0-0000-0002
3008-33B2-DDD9-0140-0000-0000
INFO: Starting run 2 ================
INFO: 2 tag report entries
E280-1190-A503-1FA0-0000-0002
3008-33B2-DDD9-0140-0000-0000
INFO: Starting run 3 ================
INFO: 2 tag report entries
E280-1190-A503-1FA0-0000-0002
3008-33B2-DDD9-0140-0000-0000
INFO: Starting run 4 ================
INFO: 2 tag report entries
E280-1190-A503-1FA0-0000-0002
3008-33B2-DDD9-0140-0000-0000
INFO: Starting run 5 ================
INFO: 2 tag report entries
E280-1190-A503-1FA0-0000-0002
3008-33B2-DDD9-0140-0000-0000
INFO: Done

root@impinj-14-50-de:/cust# ./docsample1_cxx 127.0.0.1
EPC: 3008-33B2-DDD9-0140-0000-0000
EPC: E280-1190-A503-1FA0-0000-0002
[many similar lines]
INFO: Done
root@impinj-14-50-de:/cust#

4.7 CAP Authentication
If you create a CAP with the cap_gen script, the upgrade file will be automatically signed with its own
certificate. You can also use your own certificate to sign the upgrade image.

Note: We will assume we are in the examples directory in the ETK for the rest of the document.

$ cd /examples

4.7.1 Settings

There are three settings for CAP authentication:

• Disabled: CAPs cannot be installed on the reader (default).
• Open: Unencrypted default-signed or unencrypted custom-signed CAPs can be installed.
• Secure: Only encrypted or unencrypted custom-signed CAPs can be installed.

These settings can be changed via the WebUI or the IoT Device Interface (REST API).

24

4.7.2 Generating a custom-signed CAP

To generate a custom-signed CAP, use the -k option in cap_gen to specify the directory that the certificate and
key are in. This directory passed in should contain a cap.cert.pem and a cap.key.pem . The cap.key.pem
is the key used to create the certificate.

Note: The key is only used to sign the image and will not need to be uploaded to the reader or integrated
into the CAP.

The -sha256 flag will prompt for a password and prompt again once you generate the CAP. You can specify
-nodes instead if you want to skip this feature.

4.7.3 Generating a self-signed certificate and key

$ openssl req -x509 -newkey rsa:4096 -keyout cap.key.pem -out cap.cert.pem -sha256 -days 365
$ mkdir cap_signing
$ mv cap.cert.pem cap_signing
$ mv cap.key.pem cap_signing

4.7.4 Generating the signed upgrade image

$../cap_gen.sh -d cap/cap_description.in -k cap_signing -o my_cap.upgx

The CAP will now be signed with the private key in the directory specified with -k.

4.7.5 Installing a custom-signed CAP

In contrast to when you’re installing a default-signed CAP, where cap_gen will use a default key to sign
the upgrade file and the corresponding certificate is on the reader by default, you will need to upload your
certificate onto the reader before the custom-signed CAP can be installed. After that, the method for
installing the CAP image is the same as a firmware image.

Note: The reader’s CAP authentication mode will need to be either Open or Secure.

You can install a CAP by using either the WebUI or the IoT Device Interface (REST API).

4.7.5.1 Installing the CAP authentication certificate via the WebUI Navigate to the reader’s
home webpage and you should see the section Firmware and CAP. Unless you have deleted the default
certificate you should see that there’s one certificate installed:

25

You can click on the the text that says "1 Certificate Installed →" to add, delete, and view the installed CAP
certificates. It should have the default CAP certificate installed by default.

You can upload the one corresponding to the private key you used to sign your CAP image.

26

4.7.5.2 Installing a CAP authentication certificate with the IoT Device Interface A simple
curl command will upload a CAP signing certificate to a reader.

$ curl -k -u : -X POST -F
"upload=@cap_signing/cap.cert.pem" https:///api/v1/system/certificates/cap/certs

4.8 CAP Encryption
For CAP encryption, the CAP authentication setting must be set to Secure. We’re going to use the CAP
example from the ETK to go through the CAP encryption process.

Generate the key pair to use for encrypting.

Note: This can be the same pair used for signing.

$ openssl req -x509 -newkey rsa:4096 -keyout cap.key.pem -out cap.cert.pem -sha256 -days 365
$ mkdir cap_encrypt
$ mv cap.cert.pem cap_encrypt
$ mv cap.key.pem cap_encrypt

In <etk_dir>/examples/cap/cap_description.in, uncomment the Encrypt=True line and uncomment
and edit the Recipients line to point to the certificate created for encrypting. This line is basically telling
the cap_gen script which certificate we want to use to encrypt the file.

27

Encrypt the upgrade filesystem content. Note that this will be
decrypted when the upgrade file is processed by the reader.
The default is 'False' (don't encrypt)
Encrypt = True

Should point to the cert from the key pair used to encrypt the bundle.
Recipients = ./cap_encrypt/cap.cert.pem

Now just generate the CAP as you would normally. You can either leave the bundle default-signed or sign it
by passing the -k option illustrated in the previous section.

4.8.1 Generating the encrypted upgrade image

$../cap_gen.sh -d cap/cap_description.in -o my_cap.upgx

Because the bundle is now encrypted, the reader will need the certificate/private-key pair. The certificate is
the one identified in Recipients and the private key is the one used to generate the certificate. You will
need to bundle the two together in a pkcs12 file.

Note: openssl will prompt you for a password with which to generate the bundle. The reader does not
require one, but if you specify a password, it must be provided in the curl request when uploading.

$ openssl pkcs12 -export -out cap_encrypt/cap_enc_bundle.p12 \
-in cap_encrypt/cap.cert.pem -inkey cap_encrypt/cap.key.pem

You can currently only upload the bundle to the reader through the IoT Device Interface. It will return a
certId that you will need to specify the certificate.

$ curl -k -u : -X POST \
-F "upload=@cap_encrypt/cap_enc_bundle.p12" \
-F"password=" \
https:///api/v1/system/certificates/tls/certs

You will need to tell the reader that you want to use the certificate you uploaded, with the pkcs12 bundle,
specifically for CAP encryption. The certId from our example is 1.

$ curl -k -u : -X PUT -d "{"certId":}" \
https:///api/v1/system/certificates/tls/services/cap-encryption

Now you can upload the CAP to the reader as you would any other CAP or firmware image.

4.9 Accessing the Linux shell
Impinj readers have their own command-line interface named "RFID-Shell" or "RShell" for short. End users
can access this interface with the RS-232 console port, or by connecting to the reader over the network via
SSH if it is configured. For information on how to configure network services, see the Software features
section.

With this interface, you can configure the reader and display system information. However, for an embedded
developer, this interface is insufficient, so access to the underlying Linux shell is required. Because of the
critical nature of this interface and the ability to adversely affect reader behavior if it is misused, access to
the Linux shell (named "OSShell") is protected from the end user.

28

For an embedded developer, access to this interface is made possible via a custom application configuration
file that is built into the CAP upgrade image. For details about creating the CAP partition, please see the
section CAP creation above.

To enable access to OSShell via RShell, you must create the following file within the CAP file system:
/cust/sys/reader.conf. This file does much more than enable access to OSShell. More specific information
is provided in the Reader configuration section.

For OSShell access, the following lines (or stanza) must appear within the file.

[rshell]

password=developer

4.9.1 Enabling access to OSShell

After you build an upgrade image with the CAP partition containing this file, and load the upgrade image
onto the reader, you can enable access to OSShell by using the following RShell command:

> osshell developer

The password (developer in this example) must match the password that exists in the reader configuration
file loaded onto the reader. Invalid passwords will be rejected as if the command were invalid for security
purposes. The OSShell feature is intended for embedded developers only. If the password is left blank (with
the string password=), then password checking is disabled.

Note: Impinj highly recommends that the OSShell feature be disabled in deployed CAP image files.

4.9.1.1 Linux syslog An on-reader application can log information to the Linux application sys-
log using the BusyBox logger command line tool. The application syslog content is stored in the
/mnt/spp/log/syslog-app.log file.

Usage: logger [OPTIONS] [MESSAGE]
-s Log to stderr as well as the system log
-t TAG Log using the specified tag (defaults to user name)
-p PRIO Priority (numeric or facility.level pair)

Example usage:

logger -s "Test Output to SysLog 1"

logger -s -t TEST1 "Test Output to SysLog 2"

logger -s -t TEST1 -p 7 "Test Output to SysLog 3"

logger -s -t TEST1 -p user.notice "Test Output to SysLog 04"

Resulting content in the syslog-app.log file:

Jul 18 15:59:18 (none) root: Test Output to SysLog 1
Jul 18 15:59:19 (none) TEST1: Test Output to SysLog 2
Jul 18 15:59:19 (none) TEST1: Test Output to SysLog 3
Jul 18 15:59:20 (none) TEST1: Test Output to SysLog 4

29

Note: The syslog priority levels are Emerg (0), Alert (1), Crit (2), Error (3), Warning (4), Notice (5), Info (6),
and Debug (7). For more information on syslog levels, refer to the Impinj RShell Reference Manual.

4.9.1.2 Secure File Transfer Protocol (SFTP) There is an SFTP server on the reader that you can
use to transfer files. As a security measure, this service is disabled by default. For information about how to
enable SFTP, see the RShell Reference Manual.

Note: As with the OSShell password, Impinj does not recommend deploying readers with this feature
enabled.

4.9.2 Automatically starting a custom application

The custom application above is intended to be run manually, and is for demonstration purposes only. A
typical custom application would be started along with the other runtime reader applications, as described in
the Runtime applications section.

To configure a custom application to start when the reader is reset, the Linux boot process invokes the
/cust/start application at system startup. This application is provided by the embedded developer and
must have executable permissions. It is started only once in the background, and its responsibility is to
launch the custom applications as required. This may itself be the custom application, or it could be a shell
script that launches, and perhaps monitors, other applications.

The following code is an example of this type of script. This example tests for the presence of a custom
application, and if it is executable, starts it. If the application ends, it logs a message and re-starts the
application after a delay.

#!/bin/sh

export LD_LIBRARY_PATH=/cust/lib
((count = 1))

while true ; do

if [-f /cust/app/rfid_control] ; then

if [-x /cust/app/rfid_control] ; then

/cust/app/rfid_control

/usr/bin/logger -p user.notice \
"Restarting custom application, count $count."

((count = count + 1))

fi

sleep 10

else
exit 0

fi
done

Note: To make this sample work, change the logging level to a level that makes logged events with priority
level user.notice visible. The description of how to configure the logging level threshold is in the section
describing the CONFIGURE LOGGING command in the RShell Reference Manual.

30

Example customer start application

On R700, the application can be monitored using systemd:

root@SpeedwayR-00-00-00:cust# systemctl status cap.service

4.9.3 Custom application library dependencies

The Impinj reader firmware contains a minimal set of libraries required for the applications it supports. A
custom application might require additional libraries to operate that are not included in the SOP. Embedded
applications that require additional library support can include these libraries in their CAP image, and can
configure Linux via the LD_LIBRARY_PATH environment variable to scan the CAP partition when it searches
for dynamic library dependencies.

A typical example of this is a custom application written in C++ that requires the dynamic library libstdc++,
which is not included in the SOP. To handle this scenario, developers should include this library in their CAP
file system. Then the custom application start script should set the LD_LIBRARY_PATH environment variable
to point to the directory where the shared objects are located, as is shown in the sample start script above.

4.9.4 Custom Application Execution Environment

CAP applications execute in a sandboxed environment with a limited view of the system. We use systemd to
provide these facilities. Note that these restrictions are only present when the CAP application is executed
by systemd as part of the cap.service file -- these restrictions will not be present if the CAP application is
executed by any other mechanism (such as manually from the shell).

At a high level, the sandbox serves two purposes:

1. restricting access to resources (including CPU and RAM)
2. isolating the CAP from the rest of the system

4.9.4.1 CAP Resource Restrictions The CAP application is allotted the equivalent of 50% of one
processor core and 256MB of RAM.

4.9.4.2 CAP Isolation The CAP has a read-only view of the filesystem except for some special locations.
These include:

1. /dev/log to enable the CAP to write to the system log
2. /dev/eeprom to enable the CAP to run RShell commands (RShell must be able to access this file with

write permissions set)
3. /var/run to allow access to certain Unix Domain sockets
4. /mnt/spp/conf and /var/conf to allow the CAP to change system configurations. For example, some

RShell commands will update these directories
5. /mnt/spp/log to allow access to the system log
6. /mnt/spp/core to enable writing core files for debugging in case the CAP crashes
7. /scratch to store large files or files that need to persist (note that /cust can and should be used for

this). The filesystem mounted at /scratch is 864MB and the filesystem mounted at /cust is up to
256MB

8. /etc to allow the CAP to change general system configurations

The CAP has a private /tmp directory that is isolated from the global /tmp directory used by
the system. This directory is created when the CAP starts and is removed when CAP execu-
tion terminates. When the CAP is running, it can be accessed from OSShell and is located at
/tmp/systemd-private-<hash>-cap.service-<hash>. This is a tmpfs and should be used instead of
/dev/shm, which is not guaranteed to be present.

31

4.9.4.3 Complete Systemd Execution Environment Configuration A complete listing of the sys-
temd Service configurations can be found on your reader at /lib/systemd/system/cap.service. For more
information about these options, see the systemd documentation.

32

