Force Your Connections

decided to use the word frame as the seed for my brainstorm. One thing led
to another, and 1 soon had a bunch of ideas dealing with enclosing games
within rule structures, with recursive games and frames within frames, like
those pictures that show a person holding a picture of herself holding a pic-
ture of herself, and so on. This one seed for my mental random-number gen-
erator eventually shaped the design of my game system a great deal, and it is
now called GameFrame.

It’s a sure thing that my “creative DNA” determined the shape of my game,
at least partially. For example, I've been fascinated with recursion and self-
reference at least since I read Gédel, Escher, Bach when 1 was 14. These
powerful inclinations are analogous to the rigid programming of one’s PC.
However, the street sign bumped me out of my rut. Before I gave my ran-
dom-number generator a seed to chew on, the only idea I came up with was
that my game might use drinking straws as components!

End Notes

1. Hall, Doug, and David Wecker. 1995. Jump Start Your Brain. Werner
Books.

See Also

* Random Wikipedia page (http://fen.wikipedia.org/wiki/Special:Random
page)

* Random page from H2G2 (http://www.bbc.co.uk/dna/h2g2/Random
EditedEntry)

* Other random URLs (http://randomurl.com)

* Wikipedia entry for “Random number generator” (http://en.wikipedia.
org/wiki/Random_number_generator)

Force Your Connections

Use a simple process to generate many complex ideas quickly from a limited
pool of simple ideas.

The process of morphological forced connections is fairly old; the picture
books for children that allow you to combine the head of a giraffe with the
body of a hippo and the tail of a fish are one example. The process was for-
malized by Fritz Zwicky at Caltech in the 1960s! and was popularized in
1972 by Don Koberg and Jim Bagnall in their book The Universal Traveler.2

Most other books that discuss the technique seem to derive their discussion
of it from The Universal Traveler and even use the same example: creating a
new design for a ballpoint pen. We'll take a somewhat different approach.

Chapter 3, Creativity | 73

HACK
#20

HACK
#20

Force Your Connections

In Action

The basic process for making forced connections, as outlined by Koberg and
Bagnall, is simple and sound:

1. List possible features of the object you are trying to create, one feature
per column. For example, the features might include color, size, and
shape.

2. In the column under each feature variable, list as many values for that
variable as you can. For example, under color you might list all the col-
ors of the rainbow, as well as black, white, gold, and silver.

3. Finally, randomly combine the values in your table many times, using
one value from each column. To continue our example, you would use
one color, one size, and one shape each time.

E Technically, steps 1 and 2 are morphological analysis, and
step 3 is the morphological forced connections stage.

The result will be a randomly generated list of possibilities, none of which
might be just what you’re looking for, but most of which will probably be
interesting. Feel free to fine-tune the results. For example, you might not like
the suggestion “orange, tetrahedron, a meter on a side,” but “orange, tetra-
hedron, half a meter on a side” might hit the spot.

Of course, you can force connections with a pen and paper, as recom-
mended in The Universal Traveler, but computers have become widespread
since 1972 and you might find them to be a much more efficient tool. To
that end, this hack includes a Perl script called pyro, which is a somewhat
streamlined successor to a HyperCard stack for the Macintosh called
Inspirograph that I released in the 1980s.3

Inspirograph could generate anything from New England place names (like
Lake Nattagoonsucketpocket) to random tabloid headlines. Because the
examples I included were humorous, many people who downloaded the
stack thought it was only good for a laugh, but it was actually intended for
serious design, as is pyro.

The Code

Place the following Perl script in a file called pyro and make it executable.
You also can download the pyro script and accompanying utopia.dat file
from this book’s page on O’Reilly’s web site (see the Preface for details).

74 | Chapter 3, Creativity

Force Your Connections

#!/usr/bin/perl -w
my $infilename = $ARGV[O];
my $basevar = "\@$ARGV[1]\@";

my $pickatrandom = 1;
if (($ARGV[2]) && ($ARGV[2] eq "all"))
{

$pickatrandom = 0;

}

Seed the output file
my $outfilename = "/tmp/pyro.txt";
open(OUTFILE, "> $outfilename")
or die "Couldn't open $outfilename for writing: $!\n";
print OUTFILE "$basevar\n";
close(OUTFILE);

local $/;
undef $/;

open(INFILE, "< $infilename")

or die "Couldn't open $infilename for reading: $!\n";
$infilecontents = <INFILE>;
close(INFILE);

open(OUTFILE, "< $outfilename")

or die "Couldn't open $outfilename for reading: $!\n";
$outfilecontents = <OUTFILE>;
close(OUTFILE);

while ($outfilecontents =~ /\@[A-Za-z0-9]+\@/)

{
local $/;
undef $/;

open(OUTFILE, "< $outfilename")

or die "Couldn't open $outfilename for reading: $!\n";
$outfilecontents = <OUTFILE>;
close(OUTFILE);

$baseline is the first line in OUTFILE with a variable.

if ($outfilecontents =~ /~(.*?)(\@\w+\@) (.*?)$/m)
{

$baseline = "$1$2$3";

$varname=%$2;

}
chomp $varname;

if ($infilecontents =~ /\#t$varname\n(.*?)\n\n/s)

$varblock = "$1\n";

Chapter 3, Creativity

75

HACK
#20

HACK
#20 Force Your Connections

else

{
}

@varblockarr = split (/\n/, $varblock);
@outlinesarr = ();

die "Did not find variable $varname in $infilename.\n";

if ($pickatrandom)
{
Generate a random string from the input elements
$randline = $varblockarr [rand @varblockarr];
$curline = $baseline;
chomp ($curline);
chomp ($randline);
$curline =~ s/$varname/$randline/;
push (@outlinesarr, $curline);
}
else
{
Generate all possible combinations of the input elements
foreach $varline (@varblockarr)
{
$curline = $baseline;
chomp ($curline);
chomp ($varline);
$curline =~ s/$varname/$varline/;
push (@outlinesarr, $curline);

}

$outlines = join ("\n", @outlinesarr);
$outfilecontents =~ s/\Q$baseline\E/$outlines/s
or die "baseline not found.\n";
$outfilecontents =~ s/\n\n/\n/mg;
open(OUTFILE, "> $outfilename")
or die "Couldn't open $outfilename for writing: $!\n";
print OUTFILE $outfilecontents;
close(OUTFILE);
}

if ($pickatrandom)
{

}

print $outfilecontents;

Running the Hack

Here are the first 20 lines of a datafile (called utopia.dat) for the pyro script.
You can use this file to generate interesting settings for fantasy and science
fiction stories. The values for the variables were culled from two reference
works on speculative fiction.%5

76 | Chapter 3, Creativity

Force Your Connections

In case you don’t have a computer running Perl handy, or if
you’d simply rather not get into running code, I'll explain an

alternate way to do the same thing with dice later.

#@place@
@type@ made of @material@ @location@, inhabited by @inhabitants@, @govt@,
@special@

#@type@
cavern
city
country
forest
jungle
mountain
planet
sealed habitat
village
an island

LAV <D <IN AV R DI DR D A V)

#@material@

a superstrong material
crystal

flesh

gold

= See the “How to Run the Programming Hacks” section of
the Preface if you need general instructions on running Perl

scripts.

If you have Perl installed on your system, save the pyro script and the uto-
pia.dat file in the same directory, and then run pyro by typing the following
command within that directory:

perl pyro utopia.dat place

If you’re on a Linux or Unix system, you might also be able to use the fol-
lowing shortcut:

./pyro utopia.dat place

Each variable in any pyro datafile you create should be wrapped in two @
signs, as in this example. To assign a set of possible values to a variable,
place the variable on a line by itself preceded by a hash mark (#).

Each successive line should contain one possible value. Separate variable/
value sections with blank lines, and leave two or more blank lines at the end
of the file. You can create variables whose values contain other variables, as
shown with the place variable in this example.

Chapter 3, Creativity | 77

HACK
#20

HACK
#20

Force Your Connections

In Real Life

Table 3-1 shows the data from utopia.dat in tabular form. Each column of
text contains the 10 possible values for one variable, whose name is at the
head of that column. There are six columns of 10 items, so you can generate
106 or a million possible fantasy places from this data.

Table 3-1. Data to generate fantasy places

No. Type Material Location Inhabitants Govt. Special
0 A cavern Asuper- Inan Aliens A socialist Exceed-
strong unknown utopia ingly war-
material place like
1 A city Crystal In another Apes An anarchy Where
universe cannibal-
ism is
practiced
2 A country Flesh In space Completely Ruled by a Where
normal corporation everyone
people is happy
3 A forest Gold In the Fairies Ruled by a Where
desert council of everyone
many species is insane
4 Ajungle Paper In the Fish Ruledbyagod Where
dream learning is
world exalted
5 A mountain Porce- In the Ghosts Ruled by a Where
lain fourth hereditary telepathy
dimension monarch is common
6 A planet Rubber In the Giants Ruled by a Which is
polar magical elite boundless
regions
7 A sealed Stone In the sky Insects Ruled by Which is
habitat ancient ritual micro-
scopic
8 Avillage Water Under the Intelligent Ruled by com- Which is
Earth plants puter sacred
9 An island Wood Under the Robots Ruled by Whose
sea women location
changes

If you have a 10-sided die (or, even better, six of them), or if you have some
other way to generate random digits, you can create fantasy places using
Table 3-1, generating digits sequentially and selecting one item from each
column. For example, Utopia #895779 is “a village made of wood in the

78 | Chapter 3, Creativity

Force Your Connections

fourth dimension, inhabited by insects, ruled by an ancient ritual, whose
location changes.”

The pyro script will do the same thing faster. It takes two mandatory argu-
ments and a third optional one:

* The first argument is the name of the datafile to use, such as utopia.dat.

* The second argument is the name of the variable from the datafile that
you want to expand, such as place. (Do not wrap the variable name in @
signs to match the datafile; pyro will do that for you.)

* The third argument, which is optional, is the word all. If this option is
used, pyro will generate all possible combinations of the elements in the
datafile, instead of one random element.

might take some time.

S);\ Generating all possible combinations with the all argument

Thus, the following command will generate all one million possible fantasy
places and leave the results in the file /tmp/pyro.txt:

./pyro utopia.dat place all
But this command will simply generate one fantasy place:
./pyro utopia.dat place
Here’s a slightly edited console log of running the previous command:

$./pyro utopia.dat place

a mountain made of rubber in the sky, inhabited by fish, ruled by a
hereditary monarch, where learning is exalted

$./pyro utopia.dat place

an island made of crystal in the fourth dimension, inhabited by aliens, an
anarchy, which is microscopic

$./pyro utopia.dat place

a sealed habitat made of paper in the dream world, inhabited by giants, a
socialist utopia, where learning is exalted

$./pyro utopia.dat place

an island made of flesh in the fourth dimension, inhabited by fairies, an
anarchy, which is boundless

$./pyro utopia.dat place

a mountain made of a superstrong material in the dream world, inhabited by
apes, an anarchy, where cannibalism is practiced

$./pyro utopia.dat place

a cavern made of porcelain in the polar regions, inhabited by intelligent
plants, ruled by a council of many species, which is microscopic

$./pyro utopia.dat place

a sealed habitat made of stone in an unknown place, inhabited by giants,
ruled by a magical elite, where everyone is insane

Chapter 3, Creativity | 79

HACK
#20

HACK
#20

Force Your Connections

$./pyro utopia.dat place

a sealed habitat made of flesh in the desert, inhabited by giants, ruled by
a corporation, where cannibalism is practiced

$./pyro utopia.dat place

an island made of paper under the sea, inhabited by fairies, an anarchy,
which is boundless

$./pyro utopia.dat place

a forest made of flesh in an unknown place, inhabited by fairies, ruled by
computer, exceedingly warlike

While pyro is useful as it stands, it’s certainly possible to improve it. More
robust error checking could be added (such as checks for circular variable
definitions, and lack of a newline at the end of the file or between entries),
and it might be nice if the number of random strings to be generated were an
alternate value for the third command-line option. It’s open source, so hack
away!

End Notes
1. Ritchey, Tom. 2002. “General Morphological Analysis: A general method

for non-quantified modeling.” http://www.swemorph.com/ma.html.

. Koberg, Don, and Jim Bagnall. 1976. The Universal Traveler: A Soft-Sys-

tems Guide to Creativity, Problem-Solving, & the Process of Reaching
Goals. William Kaufmann, Inc.

. The original Inspirograph. http://ron.ludism.org/cloudbusters/inspirograph-

10.hgx.

. Manguel, Alberto, and Gianni Guadalupi. 1980. The Dictionary of

Imaginary Places. Macmillan Publishing Co., Inc.

. Stableford, Brian. 1999. The Dictionary of Science Fiction Places. The

Wonderland Press.

See Also

* Raymond Queneau of the French literary group, the Oulipo [Hack #24],

used morphological forced connections in his 1960 book Cent Mille Mil-
liards de Poémes, or One Hundred Thousand Billion Poems, a flip book
with 10 possible strips for each of the 14 lines of a sonnet, hence 1014 or
100,000,000,000,000 sonnets. As usual, computers make the whole
thing easier. Here’s a decent web version in English: http://www.
bevrowe.info/Poems/QueneauRandom.htm.

The Oulipo member Harry Mathews also devised a forced-connections
procedure dubbed Mathews’s Algorithm, which is neither random nor
exhaustive. You can read about it and experiment with it online: http:/
bumppo.hartwick.edu/Oulipo/Mathews.php.

80

| Chapter 3, Creativity

