
Unicode

In this coding exercise, you will write a general-purpose Unicode encoding C
program that will accept as input the names of an old file and its encoding, as
well as the names of the new file and the encoding it should have. This might
sound daunting, but you will be calling the powerful standard Linux program
iconv as a basis for your program. (A version of the iconv program is also
available for MS-Windows.)

First run of the encoder

$ unicode1
Enter name of file 1: sample-japanese-shiftjis.txt
Enter name of encoding 1: shift-jis
Enter name of file 2: j2.txt
Enter name of encoding 2: utf-16
iconv -c -f shift-jis -t utf-16 sample-japanese-shiftjis.txt > j2.txt

Notes

Please match the output of the re-encoding program you write as closely as
possible to the excerpts given here, within reason. Of course, you should also
check the re-encoded files themselves for errors.

References

• Unicode - Wikipedia
• The Absolute Minimum Every Software Developer Absolutely, Positively

Must Know About Unicode and Character Sets (No Excuses!) - Joel on
Software

• Ubuntu Manpage: iconv - Convert encoding of given files from one encod-
ing to another

• ICONV for Windows (slightly outdated)

Invoking the encoder

$ unicode1

1

https://en.wikipedia.org/wiki/Unicode
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
http://manpages.ubuntu.com/manpages/trusty/man1/iconv.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/iconv.1.html
https://dbaportal.eu/2012/10/24/iconv-for-windows/


Notes

This line shows the user calling the program unicode1 at the Linux command
line prompt. This is the name for the program that the user has written. You
can call your program almost anything.

Input file and encoding

Enter name of file 1: sample-japanese-shiftjis.txt
Enter name of encoding 1: shift-jis

Notes

Here the unicode1 program is prompting the user for the name of the file to be
re-encoded (file 1), as well as its current encoding (encoding 1). The user re-
sponds with sample-japanese-shiftjis.txt for the filename, and shift-jis
for its current encoding. (Shift JIS is a common eight-bit Japanese language
encoding.)

You should be able to obtain samples of Japanese that use Shift JIS encoding,
Russian in KOI8-R encoding, and Hindi in UTF-8 encoding from the course
materials. If they are not available, you can obtain UTF-8 samples of all three
languages from Wikipedia and convert them as necessary.

References

• Shift JIS - Wikipedia
• KOI8-R - Wikipedia
• Hindi Wikipedia article on the Hindi language
• Japanese Wikipedia article on the Japanese language
• Russian Wikipedia article on the Russian language

Output file and encoding

Enter name of file 2: j2.txt
Enter name of encoding 2: utf-16

Notes

The user enters j2.txt for the name of the new file, and utf-16 for the name
of the new encoding, in this case, UTF-16, the default Microsoft Windows wide

2

https://en.wikipedia.org/wiki/Shift_JIS
https://en.wikipedia.org/wiki/KOI8-R
https://hi.wikipedia.org/wiki/%E0%A4%B9%E0%A4%BF%E0%A4%A8%E0%A5%8D%E0%A4%A6%E0%A5%80
https://ja.wikipedia.org/wiki/%E6%97%A5%E6%9C%AC%E8%AA%9E
https://ru.wikipedia.org/wiki/%D0%A0%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA


character Unicode encoding. After you take this step, please also convert the
Russian and Hindi samples to UTF-16.

References

• UTF-16 - Wikipedia
• Wide character - Wikipedia
• Please understand that Han unification is the problem

Assembling the command line

iconv -c -f shift-jis -t utf-16 sample-japanese-shiftjis.txt > j2.txt

Notes

Here, the unicode1 program assembles and displays a Linux command line that
calls the Linux encoding program iconv, and then unicode1 sends the string
to the Linux shell, where it runs.

The -c parameter configures iconv to silently discard characters it can’t convert,
rather than just stop.

The -f parameter specifies the “from” or input encoding, that is, the encoding
of the old file. In this case, that’s Shift JIS.

The -t parameter specifies the “to” or output encoding, that is, the encoding
of the new file.

The file sample-japanese-shiftjis.txt is the old file, and the text > j2.txt
specifies that the output should be redirected to a new file called j2.txt, rather
than just displayed.

You should now be able to open the file j2.txt in a Windows text editor and
view its contents.

References

• C library function - sprintf()
• How do I execute a Shell built-in command with a C function? - Stack

Overflow
• EditPad Lite: Compact Unicode Text Editor—Edit Text Files in Any

Language, Script or Code Page
• Notepad++

3

https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/Wide_character
https://news.ycombinator.com/item?id=8041288
https://www.tutorialspoint.com/c_standard_library/c_function_sprintf.htm
https://stackoverflow.com/questions/19209141/how-do-i-execute-a-shell-built-in-command-with-a-c-function
https://stackoverflow.com/questions/19209141/how-do-i-execute-a-shell-built-in-command-with-a-c-function
https://www.editpadlite.com/unicode.html
https://www.editpadlite.com/unicode.html
https://notepad-plus-plus.org/


Second run of the encoder

$ unicode1
Enter name of file 1: j2.txt
Enter name of encoding 1: utf-16
Enter name of file 2: j3.txt
Enter name of encoding 2: utf-8
iconv -c -f utf-16 -t utf-8 j2.txt > j3.txt

Notes

This run of unicode1 is similar to the first one, except that it takes the Japanese-
language UTF-16 Windows file that was the result last time and re-encodes it
as a UTF-8 file called j3.txt that’s more suitable for viewing and checking on
Linux.

You might want to try the same thing with the Russian and Hindi samples.
Converting the Hindi sample from UTF-8 to UTF-16 and then back to UTF-8
is an example of a useful trick called “round-tripping”. Round-tripping a file
to an encoding you can read can help you check whether you have encoded it
correctly.

References

• UTF-8 - Wikipedia
• UTF-8 and Unicode FAQ for Unix/Linux
• Emacs - Wikipedia
• Working with Coding Systems and Unicode in Emacs - Mastering Emacs

4

https://en.wikipedia.org/wiki/UTF-8
http://www.cl.cam.ac.uk/~mgk25/unicode.html
https://en.wikipedia.org/wiki/Emacs
https://www.masteringemacs.org/article/working-coding-systems-unicode-emacs

	Unicode
	First run of the encoder
	Notes
	References

	Invoking the encoder
	Notes

	Input file and encoding
	Notes
	References

	Output file and encoding
	Notes
	References

	Assembling the command line
	Notes
	References

	Second run of the encoder
	Notes
	References



